SCOPE OF ACCREDITATION

D.I. Mendeleyev Institute for Metrology (VNIIM) Affiliated branch of the D.I. Mendeleyev Institute for Metrology (VNIIM-VNIIR) Unique accreditation record number in the Register of accredited conformity assessment bodies -

RA.RU.311764

recover of a legal entity or partnerse, first mone and percentaging (if any) of individual enterparation

7 "a", 2nd Azinskaya Str., Kazan, Republic of Tatarstan, 420088, RUSSIA business address.

Calibration of measuring instruments RVR

celibration mark onde

No'.	Measurements,	Metrologic	a) requirements	Note ²
	type (group) of measurement instruments	Measurement Range	Uncertainty ³ (error, class)	
1	2	3	4	5
			EVEL, VOLUME OF SUBSTA	NCES
1	Instruments m		TATH POST STATE OF THE PROPERTY OF THE PROPERT	0404000
1.1	Verification setups for volume flow and liquid volume	0,001 to 2500 m ³ /h 0.001 to 4500 m ³ /h	$U_{6,95} = 0.034 \%$ ER ± (0.045 - 0.055) % $U_{6,95} = 0.034 \%$ ER ± (0.06 - 1.0) %	Direct comparison method using liquid flow standard. Comparison method using transfer standard along with iquid flow standard
1.2	Verification setups for tube pistons, compact- provers	0,01 to 4500 m³/h	U _{6,95} = 0,029 % ER ± (0.05 - 0.1) %	Direct comparison method using liquid flow standard. Comparison method using transfer standard along with liquid flow standard
1.3	Verification scrups for mass flow and liquid mass	0,001 to 2500 t/h 0,001 to 4500 t/h	$U_{nos} = 0.033 \%$ ER = (0.04 - 0.05) % $U_{nos} = 0.033 \%$ $ER \pm (0.06 - 1.0) \%$	Direct comparison method using liquid flow standard. Comparison method using transfer standard along with liquid flow standard
1.4	Verification setups for volume flow and liquid mass	1960 to 3060 dm ⁵	$U_{0.85} = 0.025 \%$ ER ± $(0.04 - 0.05) \%$	The method of direct comparison using liquid volume standard
		1000 to 3060 kg	$U_{ops} = 0.025 \%$ ER ± (0.04 - 0.05) %	Direct comparison method using liquid mass standard
1.5	Verification setups for mass flow of liquids composing gas-liquid mixtures (GLMs) and volume flow of	Mass flow of liquid mixture composing GLM: 0,01 to 500 t/h Valume flow of gas	$U_{0.91} = 0.3 \%$ ER $\pm (0.5 - 2.0) \%$	Method of direct comparison using GLM standard. Comparison method using comparator with along with GLM standard
	gas composing GLM, reduced to standard conditions	composing GLM, reduced to standard conditions: 0,1 to 16000 m ² /h	$U_{5/8} = 0.97 \%$ ER ± (1.0 - 5.0) %	
1.6	Measuring setups for mass	Mass flow of liquid mixture composing GLM:		Method of direct comparison using

1		VI. The second s		
	flow of liquids composing gas-liquid	0,01 to 1000 t/h	$U_{5,85} = 0.3 \%$ ER $= (1.5 - 2.5) \%$	GLM standard
	mixtures (GLMs) and volume flow of gas composing GLM reduced to standard conditions	Volume flow of gas composing GLM, reduced to standard conditions: 0.1 to 70000 m ² /h	U _{0,95} = 0.97 % ER ± (4.0 + 5.0) %	
1.7	Verification setups for gas volume flow	3·10 ⁻⁴ to 72000 m ⁵ /n	U _{0,95} = 0.2 % ER ± (0.2 - 2.0)%	Direct comparison method using gas flow standard. Comparison method with using transfer standard along with gas flow standard
1.8	Gas mass flow calibration equipment	3,6-10 ⁻¹ to 6,3-10 ⁶ kg/h	$U_{a,c} = 0.2 \%$ BR $\pm (0.2 - 0.5) \%$	Direct comparison method using gas flow standard. Comparison method using transfer standard along with gas flow standard
1,9	Flow transducers, flow meters and volume meters for liquids	0,01 to 500 m ³ /h	U _{c.95} = 0.0332 % ER = (0.07 - 5.0) %	Direct comparison method using liquid flow standard
1.10	Flow transducers, flow meters and mass meters for liquids	0,01 to 500 t/h	U ₂₈₆ = 0.0322 % ER ± (0.05 - 5.0) %	Direct comparison method using liquid flow standard
1.11	Flow-counters for gas-liquid mixtures	Mass flow liquid mixtures composing GLM: 0,01 to 1000 t/h	$U_{595} = 0.3 \%$ ER ± (2.0 - 2.5) %	
		Volume flow of gas composing GLM, reduced to standard conditions: 0.1 to 70000 m ³ /h	U _{0,35} = 0.97 % ER ± (4.0 ~ 5.0) %	Method of direct comparison using GLM standard
11.12	In-line analyzers of fractional composition of oil and oil products	Percentage of volume of water in the volume of liquid mixture (volume fraction): 0.01 to 99.99%	U _{0,95} = 0.26 % ER ± 5.0 %	Method of direct comparison using GLM standard
76.		Percentage volume of oil in the volume of liquid mixture (volume fraction): 0.01 to 99.99%	U _{9.45} = 0.26 % ER ± 5.0 %	
		Percentage of gas volume in the GLM volume (volume fraction) 0.01 to 99.99%	U _{3,05} = 0.51 % ER ± 5.0 %	
1.13	Critical nozzles	3·10 ⁻⁴ to 2000 m ³ /h	$U_{6/45} = 0.1 \%$ ER ± (0.15 - 0.5) %	Direct comparison method using gas flow standard
1.14	Flow transducers, flow meters, gas volume	3-10 ⁻⁴ to 1,6-10 ⁴ m ³ /h 1,6-10 ⁴ to 1,8-10 ⁵ m ⁵ /h ⁴	$U_{0.45} = 0.1 \%$ $ER \pm (0.2 - 5.0) \%$ $U_{0.45} = 0.1 \%$ $ER \pm (0.3 - 5.0) \%$	Direct comparison method using gas flow standard

	flow meters, rotameters, rheometers			
.15	Leakage calibrators	3·10 ⁻⁴ to 1 m ³ /h	$U_{0.95} = 1.0 \%$ ER $\pm (1.0 - 5.0) \%$	Direct comparison method using gas flow standard
-	Volume measurin			100000000000000000000000000000000000000
2.1	Measuring tanks of the 1st class	2 to 1000 dm ³	$U_{q,qs} = 0.01 \%$ ER ± 0.02%	Indirect measurement method using mass unit standard, density and temperature measuring instruments
2.2	Measuring tanks of the 2nd class	2 to 5000 dm ³	$U_{6,15} = 0.025\%$ ER ± (0.05 - 0.1) %	Direct comparison included using liquid volume standard
2,3	Technical metal measuring tanks of the 1st class	5 to 10000 dm ³	$U_{nex} = 0.037 \%$ ER ± 0.2 %	Method of direct comparison using volume liquid standard
2.4*	Horizontal cylindrical tanks	3 to 10000 m ³	$U_{603} = 0.07 \%$ ER = $(0.2 - 0.25) \%$	Indirect measurement method (geometric method) using length and temperature measuring instruments
				Indirect measurement method (volumetric method) using volume, length, temperature and level measuring instruments
2.5*	Vertical cylindrical metal tanks	100 to 3000 m ³ 3000 to 5000 m ³ 5000 to 160000 m ³	$U_{0.85} = 0.07 \%$ $ER \pm 0.2 \%$ $U_{0.85} = 0.05 \%$ $ER \pm 0.15 \%$ $U_{0.86} = 0.03 \%$ $ER \pm 0.1 \%$	Indirect measurement method (volumetric method) using volume, length, temperature and level measuring instruments. Indirect measurement method (geometric method) using length and temperature measuring instruments
2.6*	Vertical cylindrical reinforced concrete tanks	100 to 3000 m ³ 3000 to 5000 m ³ 5000 to 100000 m ³	$U_{abs} = 0.07 \%$ ER = 0.2 % $U_{abs} = 0.05 \%$ $ER \pm 0.15 \%$ $U_{abs} = 0.03 \%$ $ER \pm 0.1 \%$	Indirect measurement method (volumetric method) using volume, length, temperature and level measuring instruments. Indirect measurement method (geometric method) using length and temperature measuring instruments
2.7*	Rectangular tunks	3 to 3000 m ³	U _{gas} = 0.07 % ER = (0.2 - 0.25) %	Indirect measurement method (geometric method) using length and temperature measuring instruments
2.8*	Ball (spherical) tanks	3 to 3000 m ²	U _{0,50} = 0.07 % ER ± 0.2 %	Indirect measurement method (geometric method) using length and temperature measuring instruments
2.9*	Trench buried steel tanks	500 to 10000 m ²	U _{0.95} = 0.07 % ER ± (0.2 - 0.25) %	Indirect measurement method (volumetric method) using volume

				length, temperature and level measuring instruments
2,10	Bulk vessel tanks	3 to 100000 m ³	U _{0,95} = 0.07 % ER ± (0.2 - 0.5) %	Indirect measurement method (geometric method) using length and temperature measuring instruments
2.11	liquid petroleum products	to 50 m³	$U_{0.05} = 0.13 \%$ ER ± 0.436	Indirect measurement method (volumetric method) using volume, length, temperature and level measuring instruments
	Rail tank cars (tank wagons)	3 to 200 m ²	U _{0,45} = 0.1 % ER + 0.3 %	Indirect measurement method (volumetric method) using volume, length, temperature and level measuring instruments
3	Level measuring			
3.1	Level gauging systems	0 to 80 m	$U_{0.38} = 0.06 \text{ mm}$ ER ± (0.1 - 6) mm	Direct comparison method using length measuring instruments
3.2	Level transmitters and level transmitters Level signaling devices	0 to 20 m	$U_{0,35} = 0.12 \text{ mm}$ $ER = (0.3 - 16) \text{ mm}$ $U_{0,35} = (4 - 16) \text{ mm}$ $ER \pm (6 - 20) \text{ mm}$ $U_{0,35} = 0.12 \text{ mm}$ $ER = (0.3 - 16) \text{ mm}$	Direct comparison method using length measuring instruments, level measuring instruments. Direct measurement method using level gauges. Indirect measurement method using mass measuring instruments, gauge pressure measuring instruments. Direct comparison method using length measuring instruments, level measuring instruments, level measuring instruments. Direct measuring instruments. Direct measuring instruments and coordinate-time measuring instruments. Direct measurement method using level gauges. Indirect method Measurements using mass measuring instruments using mass measuring instruments, gauge pressure measuring instruments, gauge pressure measuring
			TS, VACUUM MEASUREMEN	instruments
	Pressure measuring Measuring	0,1 to 20 MPa	U _{0 so} = 0.033 %	Direct comparison
	oressure ransducers		ER ± (0.1 - 2.5) %	method using deadweight tester or pressure calibrator
		PHYSICAL-CHEMICAL (ents for water volume fracti	COMPOSITION AND PROPER ion (WVF)	TIES OF SUBSTANCES
5.1 (Oil and	0.01 to 0.1 % wvf	$U_{\text{res}} = 4.10^{-3} \% \text{ wyf}$	Direct comparison
	petroleum product moisture	0.1 to 10 % wvf 10 to 60 % wvf	$U_{0.95} = 1.4 \cdot 10^{-2} \% \text{ wvf}$	method using standard volumetric moisture

	meters and verification setups – 1 st class working standards	60 to 99.9 % wyf	$U_{6/8} = 3.5 \cdot 10^{-2} \% \text{ wyf}$ $U_{6/8} = 8.4 \cdot 10^{-2} \% \text{ wyf}$ $ER \pm (0.01 - 0.1) \% \text{ wyf}$	content (for moisture meters of oil and petroleum products). Comparison method using comparator along with volumetric moisture content standard (for verification setups)
	Oil and petroleum product moisture meters and verification setups – 2*2 class working standards	0.01 to 0.1% wvf 0.1 to 10 % wvf 10 to 60 % wvf 60 to 99.9 % wvf	$U_{5,95} = 9 \cdot 10^{-3} \% \text{ wvf}$ $U_{6,95} = 1.6 \cdot 10^{-2} \% \text{ wvf}$ $U_{6,95} = 6 \cdot 10^{-2} \% \text{ wvf}$ $U_{6,95} = 9.4 \cdot 10^{-2} \% \text{ wvf}$ $ER \pm (0.02 - 0.5) \% \text{ wvf}$	Direct comparison method using standard volumetric moisture content (for moisture meters of oil and petroleum products). Comparison method using comparator along with volumetric moisture content standard (for verification setups)
5.3	Oil and petroleum product moisture meters (working measuring instruments)	0.01 to 0.1 % wyf 0.1 to 10 % wyf 10 to 60 % wyf 60 to 99.9 % wyf	$U_{0.85} = 1.9 \cdot 10^{-2} \% \text{ wvf}$ $U_{0.85} = 2.5 \cdot 10^{-2} \% \text{ wvf}$ $U_{0.85} = 8.5 \cdot 10^{-2} \% \text{ wvf}$ $U_{0.95} = 0.436 \% \text{ wvf}$ $ER \pm (0.05 - 2.5) \% \text{ wvf}$	Direct comparison method using volumetric moisture content standard
	Density measuring	instruments		
6,1	In-line liquid density transducers	600 to 1200 kg/m³	$U_{1,93} = 0.04 \text{ kg/m}^3$ ER ± (0.1 - 10) kg/m ³	Direct comparison method using liquid density standard in flow
6.2	Pycnometers, pycnometer systems, automatic flow density meters - working density standards	600 to 1200 kg/m ³	$U_{5,95} = 0.05 \text{ kg/m}^3$ ER ± $(0.1 \cdot 0.2) \text{ kg/m}^3$	Direct comparison method using liquid density standard in flow
			EMPERATURE MEASUREME	NTS
7	Temperature meas		192100000000000000000000000000000000000	
7.1	Temperature transducers	minus 40 to 155 °C	U _{ess} = 0,069 °C ER ± (0.1 - 5.0) °C	Direct comparison method using temperature calibrator. Direct measurement method using temperature calibrator

The symbol "*" next to the serial number indicates that calibration can only be performed outside permanent places of business (temporary workplaces).

² This Note indicates the implemented calibration methods (techniques). If the document designating the calibration method (technique) is dated, only that particular method is used. If the document designating the calibration method (technique) is not dated, the latest edition of the specified technique (including any modifications) shall be used.

The expanded uncertainty (U) is expressed according to ILAC-P14 and EA-4/02, is part of the CMC and represents the smallest expanded uncertainty attainable for the best calibration object available. The probability of coverage is approximately 95 % and the coverage factor k=2 unless otherwise specified. Uncertainty values without units are relative to the measured value of the quantity unless otherwise appointed.

National standards of foreign countries within the camework of the CIPM MRA agreement are used.

Acting Director of Affiliated branch of the D.I. Mendeleyev Institute for Metrology (VNIIM-VNIIR)

A.S. Taibinsky

initials, summarized the authorized person

SUPPLEMENT NO. 1 TO THE SCOPE OF ACCREDITATION

D.I. Mendeleyev Institute for Metrology (VNIIM)

Affiliated branch of the D.I. Mendeleyev Institute for Metrology (VNIIM-VNIIR) Unique accreditation record number in the Register of accredited conformity assessment hodies: RA.RU.311764

Tame of a legal cutty or summer. first town and petrosymic (if any) of an individual correspondent

7 "a", 2" Azinskaya Str., Kazan, Republic of Tatarstan, 420088, RUSSIA

Calibration of measuring instruments

RVR odilinaliau mark code

No.	Measurements, type (group) of measuring instruments	Metrological requirements		Note ²
		Measurement range	Uncertainty ³ (error, class)	768820.0
1	2	3	4	5
	MEASURE	MENT OF FLOWS, LE	VEL, VOLUME OF SUB	STANCES
1	Flow measuring instrum	ents		
1,1	Flow transducers, flow meters and liquid volume meters	0,01 to 50 m ³ /h	$U(V)_{0.95} = 0.0273 \%$ $U(Q_V)_{0.95} = 0.0303 \%$ ER = (0.07 - 5.0) %	Direct comparison method using liquid flow standards
		2,5 to 500 m ³ /h	$U(V)_{0.95} = 0.0273 \%$ $U(Q_V)_{0.55} = 0.0332 \%$ $BR \pm (0.07 - 5.0) \%$	
		5 to 50 m ³ /h	$U(V)_{0.65} = 0.0349 \%$ $U(Q_V)_{0.35} = 0.0350 \%$ $ER \pm (0.07 - 5.0) \%$	
		50 to 500 m ³ /h	U(V) _{0.05} = 0.0354 % U(Q _V) _{0.93} = 0.0357 % ER ± (0.07 - 5.0) %	
		500 to 1000 m ³ /h	U(V) _{0,95} = 0.0357 % U(Q _V) _{0,95} = 0.0358 % ER ± (0,07 - 5.0) %	
		1000 to 1500 m ² /h	U(V) _{0.85} = 0.0359 % U(Q _V) _{0.95} = 0.0359 % ER ± (0.07 - 5.0) %	
		1500 to 2000 m ³ /h	$U(V)_{0.55} = 0.0359 \%$ $U(Q_V)_{0.95} = 0.0360 \%$ $ER \pm (0.07 - 5.0) \%$	
1.2	Mass flow transmitters, flow meters and liquid meters	0,01 to 50 t/h	$U(M)_{0.93} = 0.0273 \%$ $U(Q_M)_{0.95} = 0.0303 \%$ ER + (0.05 - 5.0) %	Direct comparison method using liquid flow standards
		2,5 to 500 t/h	$U(M)_{0.95} = 0.0263 \%$ $U(Q_M)_{0.95} = 0.0322 \%$ $ER \pm (0.05 - 5.0) \%$	
		5 to 50 t/h	$U(M)_{0.95} = 0.0347 \%$ $U(Q_M)_{0.95} = 0.0348 \%$ $ER \pm (0.05 - 5.0) \%$	

		50 to 500 t/h	$U(M)_{0.55} = 0.0354 \%$ $U(Q_{\infty})_{0.95} = 0.0355 \%$ $ER \pm (0.05 - 5.0) \%$	
		500 to 1000 t/h	U(M) _{0,55} = 0.0357 % U(Q _x) _{0,95} = 0.0353 % ER ± (0.05 - 5.0) %	
		1000 to 1500 t/h	$U(M)_{0.98} = 0.0357 \%$ $U(Q_{56})_{0.95} = 0.0353 \%$ ER ± (0.05 - 5.0) %	
		1500 to 2000 t/h	U(M) _{0,85} = 0.0358 % U(Q _N) _{0.95} = 0.0357 % ER ± (0.05 - 5.0) %	
1.3	Verification setups for mass flow of liquids composing gas-liquid mixtures (GLMs) and volume flow of gas composing GLM, reduced to standard conditions	Mass flow of liquid mixture composing GLM:0,01 to 500 t/h Volume flow of gas contposing GLM: 0,1 to 16000 m³/h	$U_{0,95} = 0.3 \%$ $ER = (0.5 - 2.0) \%$ $U_{0,95} = 0.97 \%$ $ER \pm (1.0 - 5.0) \%$	Direct comparison method using GLM standard. Comparison method using comparator along with GLM standard
1.4	Measuring setups for mass flow of liquids composing gas-liquid mixtures (GLMs) and volume flow of gas composing GLM reduced to standard conditions	Mass flow of liquid mixture composing GLM: 0,01 to 1000 t/h	U _{0,35} = 0.3 % ER ± (1.5 - 2.5) %	Direct comparison method using GLM standard
		Volume flow of liquid mixture composing GLM:0.1 to 70000 m³/h	U _{0.95} = 0.97 % ER ± (4.0 - 5.0) %	
1.5	Gas-liquid mixture flow meters	Mass flow of liquid mixture composing GLM:	U _{5,35} = 0.3 % ER ± (2.0 - 2.5) %	Direct comparison method
		Gas volumetric flow rate as a part of DLS: 0.1 to 70000 m ⁵ /h	U _{0.93} = 0.97 % ER ± (4.0 + 5.0) %	using GLM standard
2	Volume measuring ins	truments		
2.1*	Horizontal tanks	0,3 to 10000 m ⁵	$U_{0.95} = 0.07 \%$ ER = $(0.2 - 0.25) \%$	Indirect measurement method (geometric method) using length and temperature measuring instruments.
		3 to 10000 m ³	U _{0.93} = 0.07 % ER = (0.2 - 0.25) %	Indirect measurement method (volumetric method) using volume, length, temperature and level measuring instruments

2.2*	Vertical tanks	0.3 to 160,000 m ³	Unvs = 0.07 % ER + 0.1 %	Indirect measurement method (volumetric method) using volume, length, temperature and level measuring instruments, Indirect measurement method (geometric method) using length and temperature measuring instruments
2.3*	Rectangular tanks	0.3 to 3 m ²	U _{0.95} = 0.07 % ER ± (0.2 - 0.25) %	Indirect measurement method (geometric method) using length and temperature measuring instruments
	MEASUREMENTS (L CAL COMPOSITION AN ANCES	D PROPERTIES OF
3	Density measuring inst			
3.1	Pycnometers, pycnometer systems, automatic density meters - working density standards	600 to 1200 kg/m ³	$U_{0.93} = 0.05 \text{ kg/m}^3$ $ER \pm (0.1 - 0.2) \text{ kg/m}^3$	Direct comparison method using density standard in flow

¹ The symbol "*" next to the serial number indicates that calibration can only be performed outside permanent places of business (temporary workplaces).

² This Note indicates the implemented calibration methods (techniques). If the document designating the calibration method (technique) is dated, only that particular method is used. If the document designating the calibration method (technique) is not dated, the latest edition of the specified technique (including any modifications) shall be used.

The expanded uncertainty (U) is expressed according to ILAC-P14 and EA-4/02, is part of the CMC and represents the smallest expanded uncertainty attainable for the best calibration object available. The probability of coverage is approximately 95 % and the coverage factor k=2 unless otherwise specified. Uncertainty values without units are relative to the measured value of the quantity unless otherwise specified.

Acting Director of Affiliated branch of the D.I. Mendeleyev Institute for Metrology (VNHM-VNHR)

Acthorized person's position

APSTI

A.S. Taibinsky

initials, survene of the authorized person